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Abstract. Shewhart charts, also known as control charts, are important
Statistical Process Control (SPC) techniques used for prompt detection
of failures in a manufacturing process and minimization of production
costs. Techniques have been used to find the chart’s parameters that
best comply with economic and statistical requirements. In this paper a
method that integrates a Greedy and a Tabu-Search (TS) algorithm is
presented to estimate these parameters for X̄ control charts which are
used for controlling process mean. When tested with different cost models
and statistical restrictions with general failure distribution, and constant
and variable sampling intervals, the performance of the proposed method
was more accurate when compared to TS alone and a Genetic Algorithm.

Keywords: Control Charts, Economic Statistical Design, Greedy Algo-
rithms, Tabu-Search

1 Introduction

Shewhart or control charts are tools used to determine whether or not a pro-
duction process is in a state of statistical control, and thus, the entities being
produced are within quality requirements. These requirements are set by Upper
and Lower Control Limits (UCL, LCL). If the quality attribute or feature of
sampled entities is not within these limits, then the process is in an out-of-control
state (non-conforming entities are being produced). In this case is necessary to
find and correct the assignable cause that originated this state (e.g., a failure)
[9]. As presented in Figure 1 a control chart requires three main parameters: n,
the size of the sample; h, the length of the sampling interval between samples;
and k, the coefficient of the control limits [9]. These parameters are selected
based on economic and statistical restrictions because there are costs and times
associated to sampling and searching of assignable causes.

The Economic Statistical Design (ESD) [2,4,13,14] of control charts is the
approach developed to design control charts considering the interactions between
the chart’s parameters and the time and money costs associated to the sampling
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Fig. 1. General Control Chart.

and searching/repairing of an assignable (or multiple) causes of failure. The ESD
considers the statistical requirements set by the error probabilities α (detecting
an out-of-control state when the process is fine) and β (not detecting an out-of-
control state when the process is not fine). Finding the most suitable values of
n, h, and k considering the economic and statistical restrictions is not an easy
task. This is because of the number of variables and the complexity of the cost
function. The ESD of control charts is considered a problem for combinatorial
optimization [8].

Among the techniques to find a suitable solution for the ESD of control
charts, Hooke and Jeeves (HJ) [11], Genetic Algorithms (GAs) [2,4,13,8,7], Tabu
Search (TS) [1] and Combinatorial Methods (CB) [14] can be mentioned. An
advantage of TS is that hybridization (integration with other meta-heuristics) is
possible to improve performance on combinatorial problems [10].

In this paper a hybrid TS metaheuristic is presented for the ESD of X̄ control
charts. This method is presented with the following characteristics: (1) integra-
tion of TS with a Greedy algorithm for initialization of the search space; (2)
diversification of the search space for the TS algorithm performed with random
uniform moves. Two case studies were considered to validate the performance of
the integrated method defined as G-TS (Greedy-TS). Significant improvements
were obtained with the G-TS method across different cost functions, restrictions,
and settings when compared to TS alone and a GA.

2 Integrated Approach

The proposed approach integrates two algorithms as presented in Figure 2. It
consists of a “Greedy” algorithm which generates a set of random solutions
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that comply with the economic and statistical restrictions of the cost model of
the control chart. With this algorithm an initial solution is produced for the
Tabu-Search (TS) algorithm which performs improved search to find a better
solution. The details of both algorithms are presented in the following sections.
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Fig. 2. Structure of the Integrated Greedy-TS (G-TS) Metaheuristic.

2.1 Greedy Algorithm

A greedy algorithm follows the problem solving heuristic of making the locally
optimal choice at each stage with the hope of finding a global optimum. Although
a greedy strategy does not in general produce an optimal solution, it may lead
to locally optimal solutions that approximate a global optimal solution in a
reasonable time [3]. In Figure 3 the structure of the greedy algorithm is presented
where the following variables are initialized:

– Total Solutions = 0, this is the counter for the total number of solutions
(up to 100) in the “Initial Set of Random Solutions” (see Figure 2).
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– Best Cost = Inf , this is the reference for the best cost found on each
iteration of the greedy algorithm. Initially, this value is set equal to Inf
(infinite). Each time that a solution is found with a cost better than the
reference (in this case, a minimum cost) this variable is updated.

– No Best = 0, if the best solution found in the present iteration of the greedy
algorithm has a better cost than the reference (Z (Best Initial Solution) <
Best Cost) then the algorithm is iterated again and the reference is updated
(Z (Best Initial Solution)→ Best Cost ). Otherwise the No Best variable
is increased by one. The algorithm is iterated until No Best = 100.
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Fig. 3. Structure of the Greedy Algorithm.

The algorithm begins by estimating values for the parameters h and kX̄ of
the X̄ chart. These values are randomly generated with a uniform probability
distribution with the following limits: 0.5 < h < 4, and 0.5 ≤ kX̄ ≤ 3.5. Then, for
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each pair h, kX̄ , n is estimated by using the expression n =
(
C + kX̄

δ

)2

, where

C is a value from a standardized normal distribution for a required value of β or
α [?]. Then, for the solution formed by the parameters n, h and kX̄ , the values
for αX̄ and βX̄ are computed. If these values are within given limits (αX̄ ≤ α,
βX̄ ≤ β) then the solution complies with statistical restrictions, otherwise the
set is re-estimated.

The complying set of values for n, h, kX̄ represents a “Feasible Solution”
which is then evaluated in the cost function (Z(n, h, kX̄)) to obtain its associ-
ated cost (Cost Solution). This process is performed 100 times leading to 100
feasible solutions (Total Solutions = 100). Then, the solution with the mini-
mum cost (min(Z)) is considered the Best Initial Solution. If the cost of this
Best Initial Solution is better (<) than the reference cost (Best Cost), then
this value is updated (Best Initial Solution→ Best Cost). If not, the variable
No Best is increased by one and the reference cost remains unchanged. After
any of these scenarios, a new process is started with Total Solutions = 0. This is
performed until No Best = 100. At this point, the final Best Initial Solution
obtained across all iterations of the greedy algorithm is considered to be the
Initial Solution for the Tabu-Search algorithm, and its cost the Initial Cost
(or reference cost) for the same algorithm.

2.2 Tabu Search (TS) Algorithm

TS is a meta-heuristic that can guide a heuristic algorithm from a local search to
a global space to find solutions beyond the local optimality. It can avoid loops in
the search process by restricting certain “moves” that would make the algorithm
to revisit a previously explored space of solutions. These moves are kept hidden
or reserved (are being kept “Tabu”) in a temporal memory (a “Tabu List”)
which can be updated with new moves or released with different criteria [5,6].
The TS algorithm which is presented in Figure 2 and is based on the algorithm
presented in [1] takes as input the Initial Solution estimated by the greedy
algorithm. This solution is diversified in order to explore a search space more
likely to contain a better solution (global optimum). The TS algorithm considers
the following variables:

– TL, the number of iterations of the TS algorithm that a solution remains in
the Tabu List (TL);

– T1 ≤ 100, the number of iterations of the integrated G-TS algorithm (see
Figure 2);

– T2 ≤ 100, the number of iterations of the TS algorithm with no better
solutions.

With the Initial Solution the TS algorithm starts the search task, diver-
sifying this solution into a set of new solutions that forms a Search Space.
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The diversification is performed by means of “moves” over the elements of
the Initial Solution (n0, h0, kX̄0

). For the case study with variable sampling
intervals, all j intervals are dependent of the length of the first interval h1 as
defined by hj = ρhj−1 [11], hence only h1 is to be estimated. For all new solutions
the values of α’s and β’s are estimated to verify compliance of the statistical
restrictions. If a solution does not comply, then Z = Inf (infinite), otherwise Z
is computed with the estimated parameters. As this is a minimization problem,
the solutions are sorted based on their cost value Z in ascendant order, thus
the first element would be that with the minimum cost of all new solutions, the
Best Solution.

To avoid search loops (revisiting solutions) and finding a local optimum,
the Best Solution is kept in a Tabu List (TL) for TL iterations of the TS
algorithm. If in the next iteration, the Best Solution is already in TL, then the
Best Solution would be the second (or third, or fourth, etc.) best solution in
the sorted Search Space. This enables the TS algorithm to produce more diverse
solutions even if these are estimated from a “not so good” solution.

The Actual Cost is updated with that of the Best Solution, Cost BS,
and the TS algorithm starts again to produce a set of new solutions from the
Best Solution. If no Best Solution/Cost BS is obtained after T2 iterations
of the TS algorithm, the Best Solution is stored and the G-TS algorithm is
executed again (for up to T1 iterations) to generate new initial values for h and
kX̄ . If T1 reaches a given limit then the G-TS algorithm stops.

In contrast to the TS algorithm presented in [1] uniform random distribution
is used to generate the moves for the diversification of n0, h0 and kX̄0

. For n0 the
upper limit for the uniform random move changes dynamically to n0/2 instead
of being fixed to 1. This enabled further exploration of the search space.

3 Results

3.1 First Case Study

The G-TS algorithm was tested to solve the cost model of Rahim et al. [12]
for the ESD of X̄ control charts with Gamma failure distributions and constant
sampling intervals. In [13] the cost model of Rahim et al. [12] was adapted to
consider general failure distribution for the ESD of X̄ charts. This allowed the
consideration of an additional failure distribution: Weibull.

Both failure distributions have a parameter related to the failure rate in a
process which is defined as:

λ =
known number of failures

Unit of Time
. (1)

λ is known as the scale parameter in the Gamma distribution and represents
the known number of failures per unit of time. For the Weibull distribution

Santiago-Omar Caballero-Morales

Research in Computing Science 78 (2014) 82



λ = 1/c where c is defined as the time where the system is likely to fail. In
order to explore the performance of the proposed algorithm, four failure rates
were considered for λ: 0.5050, 0.2525, 0.1010, 0.0505. Also, for the Weibull
distribution, three values for the form (f) parameter were considered: 2, 3, 4.

The solving methods considered for this case study were TS alone and GA.
TS was implemented as presented in [1]. For the GA, the algorithm presented
in [13] was considered. The data set used for this test was: µ=182, σ =

√
10,

δ=0.50, Z0=0.25, Z1=1, D0=50, D1=950, a = 20, b =4.22, W =1100, Y =500,
αX̄ ≤0.15, βX̄ ≤0.20. The comparison of performances is presented in Table 1.

For the Gamma distribution, GA, TS, and G-TS provided values for n, h, and
kX̄ that led to very similar costs Z independently of the failure rates. Significant
differences are presented with the Weibull distribution for all parameter settings
of scale and form. The significance of these results is discussed in Section 3.3.

3.2 Second Case Study

For the ESD of X̄ control charts with variable sampling intervals the cost model
presented in [11,13] was considered. If in a process there are j = 1, 2, .., J constant
sampling intervals, then hj = h. When the sampling intervals are variable, hj
is different for each period j. In [11] Rahim et al. proposed the consideration
of a specific number of J samples (sampling intervals) in the production cycle,
j = 1, 2, ..., J , so the production cycle could be considered as truncated [13]. A
truncated production cycle starts when a new component is installed and ends
with a repair or after a fixed number of J sampling intervals. The model with
variable sampling intervals considers the following:

– the first interval h1 is randomly chosen;

– the length of the next sampling intervals are chosen as hj = ρhj−1, where
hj is the sampling interval for sample j, and ρ is a decrement factor. The
sampling intervals hj are computed by applying the decrement factor to the
successor sampling interval, thus h1 > h2 > h3 > ... > hJ , because as time
continues the sampling frequency must increase given the natural wear and
tear of the components of the process [11].

Hence, for this case study, n, h1, and kX̄ were estimated. The G-TS algo-
rithm was tested against the GA presented in [13] with Weibull and Gamma
distributions with different values of λ and form. The number of sampling
intervals was J=5 and J=7 for the experiments with Gamma and Weibull
distributions respectively. The results are presented in Table 2. In all cases,
the G-TS algorithm found parameters that reduced the cost Z more than the
parameters found with the GA. The significance of these results is discussed in
Section 3.3.
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Table 1. G-TS performance compared to TS and GA: Cost Model of Rahim [12]-
Ruvalcaba [13].

Failure Dist. Parameters Technique n h kX̄ αX̄ 1 − βX̄ Z

Gamma λ = 0.5050 GA 24 1.4703 1.4421 0.1493 0.8432 467.83
f = 2 TS 24 1.4546 1.4396 0.1500 0.8438 467.81

G-TS 24 1.4554 1.4396 0.1500 0.8440 467.20

Gamma λ = 0.2525 GA 25 1.8820 1.4725 0.1409 0.8479 347.12
f = 2 TS 25 1.8916 1.4719 0.1411 0.8481 347.12

G-TS 25 1.8808 1.4767 0.1398 0.8469 346.77

Gamma λ = 0.0505 GA 28 3.7413 1.6109 0.1072 0.8496 174.70
f = 2 TS 28 3.8588 1.5585 0.1191 0.8615 174.70

G-TS 28 3.7322 1.6255 0.1041 0.8462 174.70

Weibull 1/c = 0.5050 GA 28 0.6248 1.7025 0.0887 0.8272 549.91
f = 2 TS 24 0.6521 1.4447 0.1485 0.8425 547.99

G-TS 24 0.5857 1.5900 0.1118 0.8050 540.68

Weibull 1/c = 0.2525 GA 31 0.8378 1.9410 0.0522 0.8003 453.43
f = 2 TS 25 0.8263 1.4788 0.1391 0.8464 449.41

G-TS 23 0.7753 1.4975 0.1343 0.8161 442.71

Weibull 1/c = 0.0505 GA 37 1.4401 2.0884 0.0368 0.8297 284.97
f = 2 TS 25 1.4165 1.4776 0.1395 0.8467 275.83

G-TS 24 1.4156 1.6002 0.1095 0.8022 269.99

Weibull 1/c = 0.5050 GA 30 0.5776 1.8717 0.0612 0.8070 477.72
f = 3 TS 24 0.6424 1.4458 0.1482 0.8423 480.69

G-TS 23 0.6000 1.4986 0.1340 0.8158 469.79

Weibull 1/c = 0.2525 GA 29 0.6839 1.7663 0.0773 0.8228 408.44
f = 3 TS 24 0.7421 1.4504 0.1469 0.8411 410.97

G-TS 26 0.7000 1.6977 0.0773 0.8229 399.32

Weibull 1/c = 0.0505 GA 37 1.1217 2.0867 0.0369 0.8301 296.48
f = 3 TS 24 1.1295 1.4471 0.1478 0.8419 286.28

G-TS 27 1.0333 1.7130 0.0369 0.8301 279.20

Weibull 1/c = 0.5050 GA 30 0.6524 1.7662 0.0774 0.8346 435.03
f = 4 TS 25 0.6264 1.4685 0.1420 0.8490 435.03

G-TS 26 0.5527 1.6586 0.0774 0.8346 423.55

Weibull 1/c = 0.2525 GA 37 0.7094 2.0952 0.0361 0.8280 400.11
f = 4 TS 26 0.6900 1.4892 0.1364 0.8555 387.85

G-TS 26 0.7411 1.6682 0.0953 0.8109 371.89

Weibull 1/c = 0.0505 GA 33 1.0000 1.9180 0.0551 0.8300 288.86
f = 4 TS 24 1.0432 1.4500 0.1470 0.8413 287.45

G-TS 25 0.9000 1.6457 0.0998 0.8036 277.80
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Table 2. G-TS performance compared to GA: Cost Model of Rahim [11]-Ruvalcaba
[13].

Failure Dist. Parameters Technique J n h1 kX̄ αX̄ 1 − βX̄ Z

Gamma λ = 0.5050 GA 5 23 2.2430 1.5345 0.1249 0.8061 476.39
f = 2 G-TS 5 25 2.6317 1.5450 0.1224 0.8302 472.59

Gamma λ = 0.2525 GA 5 31 3.8033 1.7658 0.0774 0.8457 354.60
f = 2 G-TS 5 24 4.0743 1.5059 0.1321 0.8273 352.64

Gamma λ = 0.0505 GA 5 29 10.0290 1.6552 0.0979 0.8502 173.61
f = 2 G-TS 5 30 10.4509 1.6009 0.1094 0.8724 173.43

Gamma λ = 0.5050 GA 5 31 3.2457 1.7733 0.0762 0.8439 379.45
f = 3 G-TS 5 26 3.1754 1.7027 0.0886 0.8015 377.04

Gamma λ = 0.2525 GA 5 28 5.0753 1.5404 0.1235 0.8655 271.66
f = 3 G-TS 5 28 4.9576 1.6702 0.0949 0.8354 271.50

Gamma λ = 0.0505 GA 5 36 14.7360 1.7114 0.0870 0.9012 130.85
f = 3 G-TS 5 25 15.2913 1.6382 0.1014 0.8056 130.06

Gamma λ = 0.5050 GA 5 28 3.7286 1.7501 0.0801 0.8148 317.50
f = 4 G-TS 5 27 3.8204 1.6122 0.1069 0.8379 316.91

Gamma λ = 0.2525 GA 5 34 6.3295 1.9685 0.0490 0.8282 226.53
f = 4 G-TS 5 26 6.2435 1.6992 0.0893 0.8024 223.60

Gamma λ = 0.0505 GA 5 29 17.9552 1.5582 0.1192 0.8717 108.82
f = 4 G-TS 5 27 17.9491 1.6731 0.0943 0.8225 107.79

Weibull 1/c = 0.5050 GA 7 56 1.0844 2.0527 0.0401 0.9543 570.79
f = 2 G-TS 7 53 1.0852 1.4637 0.1433 0.9852 564.18

Weibull 1/c = 0.2525 GA 7 74 1.4193 2.2541 0.0241 0.9796 451.95
f = 2 G-TS 7 58 1.3926 1.4809 0.1386 0.9900 441.30

Weibull 1/c = 0.0505 GA 7 97 2.8885 2.4514 0.0142 0.9933 219.30
f = 2 G-TS 7 69 2.8611 1.4562 0.1453 0.9965 208.43

Weibull 1/c = 0.5050 GA 7 44 1.0507 1.8716 0.0612 0.9258 592.15
f = 3 G-TS 7 47 1.0398 1.4501 0.1470 0.9760 590.32

Weibull 1/c = 0.2525 GA 7 52 1.3105 1.9964 0.0459 0.9462 526.48
f = 3 G-TS 7 58 1.2839 1.4421 0.1493 0.9910 520.93

Weibull 1/c = 0.0505 GA 7 74 2.1194 2.2548 0.0241 0.9796 382.03
f = 3 G-TS 7 60 2.1355 1.4895 0.1364 0.9914 373.52

Weibull 1/c = 0.5050 GA 7 46 1.0745 1.5272 0.1267 0.9688 601.08
f = 4 G-TS 7 26 1.0286 1.4803 0.1388 0.8575 598.81

Weibull 1/c = 0.2525 GA 7 38 1.2172 1.7637 0.0778 0.9063 552.99
f = 4 G-TS 7 47 1.2403 1.4945 0.1351 0.9734 551.20

Weibull 1/c = 0.0505 GA 7 53 1.8217 2.0087 0.0446 0.9486 448.55
f = 4 G-TS 7 53 1.7649 1.4684 0.1420 0.9851 443.33
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3.3 Analysis

In order to evaluate the statistical significance of the results presented in Tables
1 and 2 a “2-Sample t Test” was performed. For this purpose the hypothesis
H0 : µx−µG−TS = 0 where x = {TS,GA} was considered. It is expected that if
significant improvements are obtained then µx−µG−TS 6= 0 leading to H0 being
rejected. In Table 3 the results of the “2-Sample t Test” are presented for each
case study considering a significance level of 0.05. For all cases the improvement
achieved with the G-TS algorithm was statistically significant.

Table 3. 2-Sample t Test.

Case Study Comparison Conclusion

First G-TS vs. TS µTS and µG−TS are significantly different (p < 0.05)
G-TS vs. GA µGA and µG−TS are significantly different (p < 0.05)

Second G-TS vs. GA µGA and µG−TS are significantly different (p < 0.05)

In contrast to other TS implementations [1] where only an initial solution
is randomly generated in the presented algorithm the greedy process provides
an initial solution selected from a whole set which may be of better quality.
The importance of the initial solution for the TS process is corroborated by the
results reported in Tables 1 and 2.

4 Conclusions

The proposed G-TS algorithm achieved significant benefits when used for the
ESD of X̄ Shewhart / control charts with different probability distributions
when compared with other methods such as GA and TS. These benefits were
statistically significant with p-values < 0.05.

In addition, the integration of a greedy algorithm may lead to increase
convergence of other heuristics by providing a more specific search region. This
however has to be verified with other integration schemes (e.g., G-GA) and other
cost functions.
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